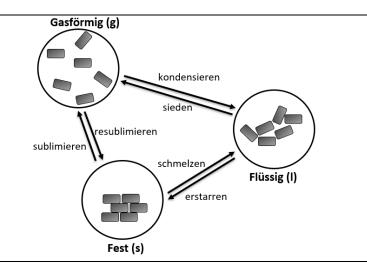
Naturwissenschaftliches Arbeiten

Beobachtung

Frage

Hypothese

Versuch
Durchführung
Beobachtung
Erklärung


Hypothese
bestätigt

Weitere Experimente

Regel / Gesetz

Regeln / Gesetze gelten so lange,
bis sie durch Experimente widerlegt werden.

Aggregatzustände

Stoffebene Teilchenebene

Typische Betrachtungsweisen Stoffebene Teilchenebene

→ makroskopisch

Eigenschaften

Betrachtungen an Stoffportionen und Reaktionen (Fakten, Phänomene) → erkennbare & messbare

Deutung der Fakten durch die Vorstellung von der Existenz kleinster Teilchen und Teilchenverbände.

→ submikroskopisch

Stoffgemische

Heterogenes Stoffgemisch:

Einzelne Stoffe erkennbar

		Hauptbestandteil		
	in	Fest	Flüssig	Gasf.
Neben-	Fest	Gemenge	Suspension	Rauch
bestand	Flüssig		Emulsion	Nebel
-teil	Gasf.	poröser Stoff	Schaum	

Homogenes Stoffgemisch:

Einheitliches Aussehen

		Hauptbestandteil		
	in	Fest	Flüssig	Gasf.
Neben-	Fest	Legierung	Lösung	
bestand	Flüssig			
-teil	Gasf.			Gas-
				gemisch

Stoffgemische und Trennverfahren

Die Eigenschaften von Stoffgemischen hängen vom Mischungsverhältnis der Reinstoffe ab.

Aufgrund der unterschiedlichen Kenneigenschaften der Reinstoffe (Dichte, Siedepunkt, Löslichkeit, ...) lassen sich Stoffgemische trennen.

Trennverfahren: z.B. Destillation, Chromatografie, Extraktion, Filtration, ...

Gasnachweise

Sauerstoff: Glimmspanprobe

Ein glimmender Span entflammt in reinem Sauerstoff wieder.

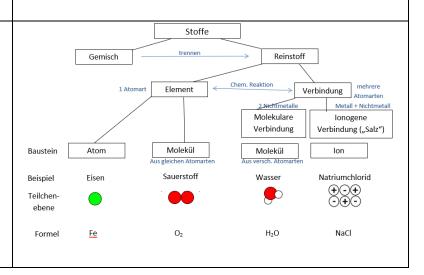
Wasserstoff: Knallgasprobe

Wasserstoff verbrennt im Reagenzglas mit einem fauchenden Knall.

Kohlenstoffdioxid: Kalkwasserprobe

Klares Kalkwasser trübt sich, wenn man Kohlenstoffdioxid einleitet. (Kalk entsteht)

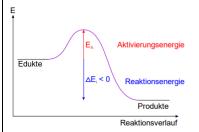
Gesetzmäßigkeiten bei chemischen Reaktionen

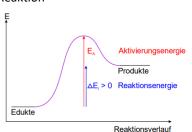

Chemische Reaktionen weisen auf:

- **Energieumsatz**: Energie wird abgegeben (exotherme Reaktion) oder aufgenommen (endotherme Reaktion)
- Stoffumsatz: Edukte reagieren zu Produkten

Satz von der Erhaltung der Masse:

In einem geschlossenen System bleibt die Gesamtmasse aller beteiligten Stoffe bei einer chemischen Reaktion gleich. Es findet nur eine Umgruppierung von Atomen statt.

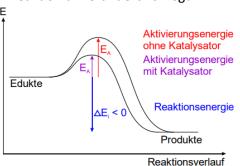

Einteilung der Stoffe



Energiediagramme Exotherme Reaktion Endotherme Reaktion

Der gesamte Energievorrat im Inneren eines Stoffes ist dessen Innere Energie E_i . $[E_i] = 1 \text{ kJ}$

exotherme Reaktion ($\Delta E_i < 0$) Energieabgabe bei chemischer Reaktion endotherme Reaktion ($\Delta E_i > 0$) Energieaufnahme bei chemischer Reaktion



Katalysator

Ein Katalysator ist ein Stoff, der

- Die Aktivierungsenergie herabsetzt
- Die Reaktion beschleunigt und
- Nach der Reaktion unverändert vorliegt.

Chemische Formel (Molekülformel) z.B. 3 H₂O Anzahl der Teilchen (z.B. Moleküle)

Atomartensymbole der Elemente

Index: Anzahl der Atome im Molekül (bezieht sich auf das voranstehende Atom)

3 Moleküle Wasser.

Jedes besteht aus 2 Wasserstoff- und 1 Sauerstoff-Atom, die fest miteinander verbunden sind.

Nomenklatur (bei molekularen Verbindungen)

Deutscher Elementname + lat. / griech. Elementname + id

z.B. Kohlenstoffdioxid:

Anzahl der Atome als Zahlwort vorangestellt: (mono) – di – tri – tetra – penta – hexa – hepta – octa – nona – deca

H: Hydrid, C: Carbid, N: Nitrid, O: Oxid, F: Fluorid, S: Sulfid, Cl: Chlorid, Br: Bromid, ...

Aufstellen einer Reaktionsgleichung

1. Anschreiben der beteiligten Stoffe

Wasserstoff + Sauerstoff → Wasser

2. Name durch Formel ersetzen

 $H_2 + O_2 \rightarrow H_2O$

3. Zählen der Atomzahlen:

4. Ausgleich der Atomzahlen NUR durch Koeffizienten

$$H_2$$
 + O_2 \rightarrow $2H_2O$
 $2H_2$ + O_2 \rightarrow $2H_2O$

5. Prüfen durch Nachzählen der Atome

Alkane

C_nH_{2n+2}

Sind Kohlenwasserstoffe, verbrennen mit Sauerstoff zu Kohlenstoffdioxid und Wasser

n = 1: Methan; 2: Ethan; 3: Propan; 4: Butan 5: Pentan; 6: Hexan, 7: Heptan, 8: Octan; 9: Nonan, ...

Atommodelle Modell nach Dalton Modell nach Rutherford

Atommodell nach Dalton Atom als kompakte Kugel

- Atome versch. Elemente unterscheiden sich in Masse und Größe
- Elemente: eine Atomart, Verbindungen: mehrere Atomarten
- Bei chemischen Reaktionen werden Atome umgruppiert.

Atommodell nach Rutherford = Kern-Hülle-Modell

- Atomkern ist: massiv, positiv geladen, sehr klein
- Atomhülle ist: nahezu masselos, negativ geladen, sehr ausgedehnt
- Beweis: Streuversuch

Atommasse und Stoffmenge

Absolute Atommasse ma

Angabe in der Atomaren Masseneinheit 1 [u] 1 [u] entspricht $^{1}/_{12}$ der Atommasse des 12 C-Atoms

1u =
$$1,661 \cdot 10^{-24}$$
 g
1g = $6,022 \cdot 10^{23}$ u

Den u-Wert kann man im PSE als Massezahl ablesen

Stoffmenge n [mol]

1 mol ist die Stoffmenge eines Stoffes, der seinen u-Wert in Gramm wiegt.

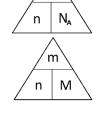
1 mol entspricht 6,022 · 10²³ Teilchen

Chemisches Rechnen

n = Stoffmenge [mol]

N = Teilchenzahl

 N_A = Avogadrokonstante: 6,022 · 10²³ 1/mol


m = Masse [g]

M = Molare Masse [g/mol]

V = Volumen [I]

V_M = Molares Volumen bei 0°C: 22,4 l/mol

Atome im PSE

X: Elementsymbol

K: Kernladungszahl = Ordnungszahl

= Anzahl der Protonen = Anzahl der Elektronen

N: Nucleonenzahl = Massezahl

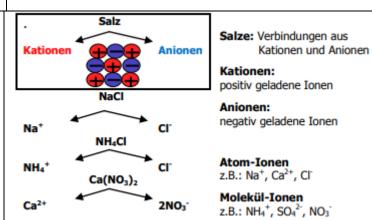
= Summe der Protonen und Neutronen

z.B. ⁷**Li**Lithium: 3 p⁺, 3 e⁻, 4 n°
Lithium besitzt 3 Protonen, 3 Elektronen und 7-3 = 4 Neutronen

Nachweisreaktionen von Ionen

Flammenfärbung

Alkali- und Erdalkalisalze zeigen eine typische Flammenfarbe: z.B. Ba: grün, Na: orange


Fällungsreaktionen

Halogenide bilden mit Silbernitrat weißliche Niederschläge Sulfate und Carbonate bilden mit Bariumionen einen weißen Niederschlag. Mit Salzsäure löst sich nur Bariumcarbonat auf.

Farbreaktionen

Fe³⁺ Ionen bilden mit Thiocyanationen eine rote Färbung. Cu²⁺ Ionen bilden mit Ammoniak eine blaue Färbung.

Salze und Ionen

Bindungstypen

Ionenbindung Metallbindung **Atombindung**

Jede chemische Bindung beruht auf der Wechselwirkung (Anziehungs- und Abstoßungskräfte) zwischen positiven und negativen Ladungen.

	Ionenbindung	Metallbindung	Atombindung
positive Teilchen	Kationen	Atomrümpfe	Atomkerne
negative Teilchen	Anionen	Elektronen(gas)	Bindungs- elektronen
		• • • •	⊕ ⊕

Summenformel Molekülformel oder

Verhältnisformel

Verhältnisformel

Die Verhältnisformel gibt das Zahlenverhältnis der Ionen einem Salz (Metall-Nichtmetall-Verbindung) an.

Molekülformel

Die Molekülformel gibt an, aus wie vielen Atomen jeweils Molekül ein (Nichtmetall-Nichtmetall-Verbindung) besteht.

Nomenklatur (bei ionogenen Verbindungen)

z.B. FeCl₃ = Eisen-(III)-chlorid **Deutscher Elementname** + Ladung des Metallions in römischen Ziffern +lat. / griech. Elementname

+ id

Die Ladung der Metallionen erhält man

- Aus der Formel durch Rechnung
- Aus dem PSE (Ionenladungen +I, +II, +III, +IV, -III, -II, -I)